A Comparison of DHMM and DTW for Isolated Digits Recognition System of Arabic Language
نویسنده
چکیده
Abstract— Despite many years of concentrated research, the performance gap between automatic speech recognition (ASR) and human speech recognition (HSR) remains large. Especially for Arabic language, research efforts are still limited in comparison with other languages such as English or Japanese. In this work, we have use two algorithms to implement a system of Automatic Recognition of isolated Arabic Digits: Dynamic Time Warping (DTW) and Discrete Hidden Markov Model (DHMM). The endpoint detection, framing, normalization, Mel Frequency Cepstral Coefficient (MFCC) and vector quantization techniques were used to process speech samples to accomplish the recognition. The better recognition accuracy of about 92% was obtained with DHMM-based system. In noisy environment, the recognition performances for the two ASR are worse but the pattern recognition using HMM is better than the pattern using DTW.
منابع مشابه
Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملSpeech Recognition System of Arabic Digits based on A Telephony Arabic Corpus
Automatic recognition of spoken digits is one of the difficult tasks in the field of computer speech recognition. Spoken digits recognition process is required in many applications such as speech based telephone dialing, airline reservation, automatic directory to retrieve or send information, etc. These applications take numbers and alphabets as input. Arabic language is a Semitic language tha...
متن کاملComparative Study of ANN and HMM to Arabic Digits Recognition Systems
Arabic language is a Semitic language that has many differences when compared to Latin languages such as English. One of these differences is how to pronounce the ten digits, zero through nine. All Arabic digits are polysyllabic (except digit zero which is a monosyllabic) words and most of them contain Arabic unique phonemes, namely, pharyngeal and emphatic subset. In a previous paper the resea...
متن کاملمقایسه روش های طیفی برای شناسایی زبان گفتاری
Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...
متن کاملEfficient System for Speech Recognition using General Regression Neural Network
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011